Circuit Analysis Worksheet

Name: _____

Date: _____

Lesson 2 - Circuit Analysis: Ohm's Law and Series Circuits

Part 1: Key Concepts

Ohm's Law: V = I × R

Where:

- V is voltage in volts (V)
- I is current in amperes (A)
- R is resistance in ohms (Ω)

Part 2: Predict Current

1. You have a 3V battery and a 330Ω resistor connected in series with an LED. What is the expected current in the circuit?

 $I = V / R = 3V / 330\Omega = ____ A$

2. If the battery voltage drops to 2V, what is the new current? I = 2V / 330 Ω = _____ A

***** Part 3: Measure & Compare

Complete the table below using your predictions and measurements (if a multimeter is available):

Configuration	Voltage (V)	Resistance (Ω)	Predicted	Measured
			Current (A)	Current (A)
LED + 330Ω				
resistor				
LED + $1k\Omega$				
resistor				

Part 4: Reflection

1. What happened to the current when you increased the resistance?

2. Why is it important to limit current in an LED circuit?

3. What are some signs that a component is connected incorrectly?

Q Answer Key – Teacher Reference

Part 2: Predict Current

1. I = V / R = 3V / $330\Omega \approx 0.0091$ A (or 9.1 mA)

2. I = V / R = 2V / $330\Omega \approx 0.0061$ A (or 6.1 mA)

% Part 3: Measure & Compare (Typical Values)

Configuration	Voltage (V)	Resistance (Ω)	Predicted	Measured
			Current (A)	Current (A)
LED + 330Ω	3V	330Ω	0.0091 A (9.1	~8-10 mA
resistor			mA)	(depending on
				LED and
				contact
				resistance)
LED + $1k\Omega$	3V	1000Ω	0.0030 A (3.0	~2.5-3.2 mA
resistor			mA)	

Part 4: Reflection (Sample Answers)

1. The current decreased when resistance increased, demonstrating Ohm's Law: more resistance means less current for the same voltage.

2. Limiting current protects the LED from burning out, since LEDs are sensitive to high current.

3. Common signs of incorrect connections include: LED not lighting up, reversed polarity, or excess heat from a component.